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Section 8 

Statistical Inference for Two Proportions 

8.1 – Validity of a Statistical Study 

Introduction 

So far, we’ve developed the theory for conducting hypothesis tests about a single parameter. While 

there are some use cases for this, this method requires us to pick a null value for the sake of making 

a comparison of our data to a hypothesis, or there has to be a reason to use that particular null 

value. In the examples from last lecture, we used p = 0.553 to represent how many households had 

no children from the 2010 US Census, and we used µ = 14.5 oz for the Starbucks coffee example 

because this is a standard set to ensure drinks don’t overfill the cups. These examples seem to come 

about from previously known population parameters, or an existing threshold set for a particular 

scenario. 

But what if we wanted to compare data across two groups or populations? Consider the dolphin 

therapy study we looked at in class this week where subjects with depression were sent to 

Honduras. Half were assigned randomly to go snorkeling with dolphins, and the other half did all of 

the same snorkeling activities but without the presence of dolphins. If we were to evaluate the 

effectiveness of dolphin therapy just based on a single sample of those that swam with dolphins, 

what would we compare our sample proportion to? Test against a null of p = 0.5? Maybe being 

better than 50% effective is reasonable for this context, but some conditions may be much harder 

to treat. What if this was done on subjects with severe depression symptoms? For an even more 

extreme case like cancer, we might be thrilled to find a treatment that’s 10% effective. This is where 

it helps to have some baseline or control group for making comparisons, so that we can better 

isolate the effectiveness of a condition. For evaluating the effectiveness of dolphin therapy, we 

wouldn’t be able to know if the presence of dolphins affected depression unless we had a control 

group to compare to – that is, a group that experienced all the same conditions but did not swim 

with dolphins.  

Additionally, comparing two populations broadens the types of inferences that we can make. So far, 

the main method of inference we have learned is the _______________________________ inference, which 

allows us to generalize results from our sample to the population. But when comparing two groups 

or variables, we may also be interested in drawing different kinds of inferences, potentially a 

______________________ inference, that is, an inference that draws a cause and effect relationship. Before 

we dive into the statistical methods for analyzing these studies, let’s first look at what allows us to 

draw these kinds of inferences!  

 

Internal and external validity 

When comparing two populations or groups, there are two ideal conclusions that we would like to 
draw: 
 

• _______________________: being able to draw an inference from your sample to a larger  
population, that is, results seen in the sample apply to the population. 
 

• _______________________: drawing a cause-and-effect conclusion – that is, the explanatory 
variable caused the outcome seen in the response variable.  
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Example: Suppose that researchers were interested in determining the effects of  
malnutrition in child development. Specifically, they wanted to see if it affects their height. 
How would we conduct a study that could determine a cause-and-effect conclusion (i.e.  
malnutrition causes you to be shorter) if there were no ethical constraints?  
 
 
 
 
 
 
Example: What kind of study would you conduct now if there were ethical constraints? 
 
 
 
 
 
 

These examples highlight two main study designs: 
 

• _______________________: a study design where researchers have control of assigning individuals
/units to their groups. Typically designed to determine causality. 
 

• _______________________: a study design that can only observe groups that individuals/units are 
self-selected into or are intrinsically part of that individual/unit. Can identify only  
associations between variables. 

It seems like experiments are the ideal way to conduct a study, as it best isolates your explanatory 

variable from other potential confounding variables. (We’ll see an example of this impact later!) As 

we saw with the previous example, this can be ethically challenging to conduct in certain  

circumstances. In others, it may be impossible! Consider designing a study whose goal is to  

determine the impacts of autism on academic achievement among high schoolers. Here, the  

explanatory variable of autism is not something that can be randomly assigned. In other  

circumstances, it is often difficult and expensive to conduct an experiment, as controlling group  

assignment, monitoring compliance with the experimental condition, and incentivizing 

participation takes a lot of time and money! 

We have discussed the first idea at length already, as this is the goal of taking a simple random 

sample of your population – so that the sample is most likely to be representative of the population 

you’re studying. Of course, even perfectly random samples aren’t always representative, you might 
get an exceptionally strange sample just by random chance. But without knowing every  

characteristic of your population (which would make looking at a sample rather pointless!), a  

randomly selected sample is often the best we can do. 

When you have a study design that is centered around random sampling, this gives the study 

__________________ validity, as the results go broader than just the sample you collected. Of course, as 

we discussed in previous sections, simple random sampling is difficult to conduct in practice. Any  

part of your study design that does not reflect this will introduce bias in some way. Some examples 

of these biases are: 
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• Undercoverage bias:  
 

 
 
 Example:  
 

• Volunteer (non-response) bias:  
 
 
 
 Example:  
 

• Survivorship bias:  
 
 
 
 Example:  
 
 
These biases represent threats to the generalizability of your study and should be reported as  
limitations of the statistical study you are presenting.  
 
Notice that the last example on dolphin therapy did not leverage a method of random sampling. The 
subjects who participated in the study were volunteers who were recruited to be part of this study 
on depression and the presence of dolphins. What kind of useful conclusion can we make then if we 
didn’t try to obtain a representative sample in any way? In this case, by the researchers using  
randomization to assign subjects to the two groups, we have done the best we can to make two  
groups as similar as possible. Thus, when analyzing the difference in depression between the two 
groups, we can isolate the source of this difference to the treatment, that is, the presence of 
dolphins with the one group that had a significantly greater improvement. By comparing groups 
that are as similar as possible in this way, we give our study _______________ validity.  
 
Regardless as to whether we conduct an experiment or an observational study (but especially for  
observational studies!), we need to assess the effect of other possible variables on the study.  
Specifically, we need to assess the impact of ______________________ variables. These variables are  
associated with both the explanatory/grouping variable and the response variable and are  
imbalanced within the explanatory variable. 
 

Example: Researchers want to investigate the effects of physical activity on the risk of  
cardiovascular disease. They compare two populations on the percentage of those who have 
cardiovascular disease: those who get at least 30 minutes of exercise daily and those who  
do not. What confounding variables might exist in this study? 
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In this case, we may want to ________________ the results after we collect them. We may not know what 
variables could be confounding until we conduct the study, which is why collecting a great deal of  
demographic information from your participants is common in surveys or other observational  
designs. In this example, we might observe the following: 
 

 Age < 40 Age ≥ 40 Total  
 CVD No CVD CVD No CVD CVD No CVD 
Sedentary 150 (10%) 1350 2000 (40%) 3000 2150 (33%) 4350 
Active 210 (7%) 2790 375 (25%) 1125 585 (13.5%) 3915 
Total 360 4140 2375 4125 2735 8265 

 
In this table, we can see that CVD is far more present among those with sedentary lifestyles 
compared to those with more active lifestyles. However, when we break it down by age, we see that 
the overall effect is actually smaller within each group than it is when combining the groups. This  
indicates that the confounding variable is also related to the response, and that the observed 
difference in CVD cannot be fully attributed to one’s physical activity. Even when stratified, physical 
activity had an impact within each group, but age is also seeming to have a big impact here too.  
This method can help to add to the external validity of your study, but always consider that other 
confounders that you haven’t yet considered may be impacting your results too, and may be threats 
to making a causal claim. Here are some other aspects of studies that may impact causality: 
 

• Group selection (self-selection bias):  
 

 
 
Example: 

 
• Drop out differences:  

 
 
 

Example: 
 

• Time/setting effects:  
 

 
 
Example: 
 

• Independence:  
 

 

Example: 
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8.2 – Statistical Inference for a Difference in Proportions 

Theoretical background 

To evaluate the difference in effectiveness for two populations or groups measured by a proportion, 

we need to understand how different our difference is relative to natural variation. This involves 

building a test statistic similar to what we did in the one population case. The general format of a 

test statistic is looking at your best estimate of the parameter p1 – p2, then dividing by the standard 

error of that estimate. First, we can quickly determine the best estimate for this parameter is the 

difference in sample proportions: 

𝐸(𝑝̂1 − 𝑝̂2) =  

 

 

 

Next, we then need to determine the standard error of our estimate. We can begin this by looking at 

the variance of our sample proportions: 

Var(𝑝̂1 − 𝑝̂2) =  

 

 

 

 

 

 

 

 

 

 

 

 

Putting these two pieces together, we get a z-test statistic for testing two proportions: 

 

z =  
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We can also use these two pieces of information to derive a confidence interval for the difference in 

two proportions, as shown below: 

 

 

   p̂1 – p̂2 ± 

 

 

 

 

Testing a difference in proportions by hand 

Let’s try an example using the equations we derived above. 

Example: Tolling on the bridge between Vancouver and Portland along I-5 is being 

proposed. To assess the differences in public opinion on tolling across state borders, a 

random sample of residents from Vancouver and a random sample of residents from 

Portland was taken. Of the 60 Portland residents sampled, 30 support tolling, and of the 50 

Vancouver residents sampled, 20 support tolling. Do Portland residents support tolling 

more than Vancouver residents? Test at the α = 0.05 level.  
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To conduct this test, we need to be sure that the assumptions are met for conducting this test. This 

primarily involves being sure that the z-test statistic’s distribution is approximately normal. Those 

conditions that we need are as follows: 

1.  

 

 

 
2. (for HTs) 

 

 

 

2. (for CIs) 

 

 

R code for testing a difference in proportions 

We can also approach computing this test using R. One method for doing this involves creating a 

table of data. For the problem above, you could envision the data appearing in a two-way table: 

 Support Tolling Against Tolling Total 
Portland  

 
  

Vancouver  
 

  

Total  
 

  

This is more likely seen when working with a categorical data set in R and extracting counts (see 

next example), but we can also build this up manually using a structure with the table function in R. 

For this to calculate the percentages correctly, it is imperative that the groups represent the rows, 

and the response variable represents the columns. To enter this data into a table we first create a 

matrix structure, then cast it as a table: 

tolling = as.table(matrix(c(30, 30, 20, 30), ncol=2, byrow=T)) 

If you would like to give the rows/columns names, you can use the following code to do that, 

although this is purely for aesthetic purposes. The names default to A, B, … if these are not specified. 

colnames(tolling) = c("Support", "Against") 
rownames(tolling) = c("Portland", "Vancouver") 

This creates the following table in R if you run just the tolling variable in the console:  

          Support Against 
Portland       30      30 
Vancouver      20      30 
 
With this structure created, we can use the following code to conduct the test (or generate a 
confidence interval!) 
 
prop.test(tolling, correct=F, conf.level=0.95, alternative="greater") 
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When the raw counts are presented as in this example, a simpler way to compute this test is to just 
enter both of the counts and sample sizes into the same fields we would have done on a one-sample 
test. Since there are two samples now, we just enter in a vector of x values and a vector of n values. 
See the example below: 
 
prop.test(c(30, 20), c(60, 50), correct=F, conf.level=0.95,  
alternative="greater") 
 
Our use of the argument “correct” does not imply we are telling the interval to be incorrect, we are 
just turning off something called the Yates continuity correction that R does by default. This  
continuity correction is used for helping to correct the normal distribution approximating a  
binomial for smaller sample sizes. If the sample size you are testing is too small, it is better to use a 
more exact test like Fisher’s Exact Test. While we used an exact binomial test for the case of one 
proportion, there is more controversy about the use of an exact test for two proportions due to the 
complications introduced by an additional variable, and how it potentially produces p-values that 
are too large. 
 
We may also be presented with data that don’t come in tallies, but inside an existing data set. In this 
case, it’s even easier to conduct this test, as we can create a table of the counts in one line. Let’s try 
an example using a data set directly. 

  
Example: Blood donations from volunteers serve a crucial role in the nation’s health care  
system, so public health researchers are interested if the likelihood of donating blood in the 
USA has increased over time. To investigate this question, researchers examined data from 
the General Society Survey (GSS) in 2012 and 2014. The GSS is a national survey conducted 
every two years, which determines its participants through a random sample of adults in 
the USA. Data from this study are summarized in the data file blooddonations.csv.  
Determine if there has been a significant increase in blood donations at the α = 0.05 level.  
Confirm this result by computing a 90% confidence interval. 

 
b.table = table(blooddonations$year, blooddonations$donation) 
prop.test(b.table, correct=F, alternative="less")  
prop.test(b.table, correct=F, conf.level=0.9) 
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8.3 – Conducting Tests with Simulation 

Experimental design 

This week, we focused on analyzing the dolphin therapy study. As a reminder, here is the design of 

that study: 

Example: Researchers recruited 30 subjects aged 18-65 with a clinical diagnosis of mild to 

moderate depression. Subjects were required to discontinue use of any antidepressant 

drugs or psychotherapy four weeks prior to the experiment, and throughout the 

experiment. These 30 subjects went to an island off the coast of Honduras, where they were 

randomly assigned to one of two treatment groups. Both groups engaged in the same 

amount of swimming and snorkeling each day, but one group (the animal care program) did 

so in the presence of bottlenose dolphins and the other group (outdoor nature program) did 

not. At the end of two weeks, each subject’s level of depression was evaluated, as it had been 

at the beginning of the study, and it was determined whether they showed substantial 

improvement (reducing their level of depression) by the end of the study. The data from 

this study are summarized below and can be found in the dolphin.csv file.  

 

 

 

 

 

How might we evaluate the validity of this study? Well, we can first recognize that this study had an 

experimental design, by randomly assigning participants to each group. In TinkerPlots, we 

created a process that took the existing variables and put them in their own devices, then re-

assigned them to each other. The assumption of the null hypothesis was key in doing this – we 

could just take the outcomes (improved or no improvement) to represent the subjects, as if the null 

were true, dolphin therapy would be just as effective as the regular therapy, and the subjects would 

have the same outcome regardless of group assignment. We can replicate this process in R too! 

In the previous sections, like with bootstrapping the kissing study in Section 6, we created the data 

vectors by using the rep() function to build all the necessary duplicates. We could do the same 

based on the table above, but we can also easily do this by using the vectors from the csv file! Let’s 

read in that csv file and use the sample function to randomly assign each person (and their 

outcome) to a new group, just as we did earlier! 

treatment_rand = sample(dolphin$treatment, 30, replace=F) 
result_rand = sample(dolphin$result, 30, replace=F) 

By sampling both vectors without replacement at the full sample size of 30, we are effectively just 

reordering each vector. To complete the random assignment process, we can now create a data 

frame out of these two vectors – assigning each entry of the vector to the corresponding entry in the 

other vector. 

 Improved No Improvement Total 

Dolphin 10 5 15 

Regular 3 12 15 

Total 13 17 30 
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dolphin_rand = data.frame(treatment_rand, result_rand) 
table_rand = table(dolphin_rand) 
table_rand 

treatment_rand Improvement No Improvement 
       Control           6              9 
       Dolphin           7              8 

Using this data, we could examine the results of this randomized test. In class, we looked just at the 

counts of each – the randomized table I got above would show a difference of just 1 between the 

two groups. Since we’ve formalized this section to be about proportions, let’s examine this as a 

difference in proportions instead! To do this, we can extract elements from the table using square 

brackets. The counts in the table above are indexed by column, so the counts 6, 7, 9, 8 correspond to 

indices 1, 2, 3, and 4. 

p_control = table_rand[1]/(table_rand[1]+table_rand[3]) 
p_dolphin = table_rand[2]/(table_rand[2]+table_rand[4]) 
diff = p_dolphin-p_control 

Note: Generally, proportions are best to use universally, as the groups you are comparing may be 

different sample sizes – larger groups will have larger counts naturally, but proportions or 

percentages are always comparable! 

With this whole setup, we now just need to place this code in a larger for-loop and collect these 

differences in percentages many times! We can then evaluate how many times we got a difference 

of 46.67% (10/15 – 3/15) or greater! 

diffs = rep(0, 1000) 

for (i in 1:1000) { 
  treatment_rand = sample(dolphin$treatment, 30, replace=F) 
  result_rand = sample(dolphin$result, 30, replace=F) 
  dolphin_rand = data.frame(treatment_rand, result_rand) 
  table_rand = table(dolphin_rand) 
  p_control = table_rand[1]/(table_rand[1]+table_rand[3]) 
  p_dolphin = table_rand[2]/(table_rand[2]+table_rand[4]) 
  diffs[i] = p_dolphin – p_control 
} 

hist(diffs) 
abline(v=0.4666, col ="red") 

mean(diffs > 0.4666) 

Remember that mean here to find a percentage seems a bit counterintuitive – but using the “>” 

operator is effectively checking all 1000 differences to see if they are greater than 0.4666 or not, 

and assigning 1 (True) or 0 (False). Since there are only 1’s and 0’s here, finding the mean is the 

equivalent as the percentage of 1’s present – both are found by adding up 1s and dividing by the 

sample size. Thus, we have the p-value! Check to see if this lines up with what you found in our 

activity, and with what you would find in the additional practice problem for this section. 

Observational studies 

The key aspect of an experimental design in the simulation process is the random assignment 

process. Because the researchers used a random process to generate their data, we could replicate 
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this random process under the null hypothesis to see what might happen just by random chance. 

But what if we were looking at an observational study, where random assignment isn’t possible? 

Assuming that the observational study had a good design, it would use random sampling from each 

of the two populations being compared. While we can’t conclude cause and effect from a design like 

this, random sampling does promote good external validity – that is, it would show that the results 

in our study are generalizable to the larger populations.  

But how do we simulate what random sampling looks like? To accurately create a simulation that 

samples from our population, we would need to know what the population proportions would be 

for each population. But this isn’t possible – and if we know what our population looks like, 

statistical inference wouldn’t be necessary! However, we can make a guess as to what the 

population might be. This is what we did when we bootstrapped our data in Section 6, and assume 

that a random sample is the best representation we have for our population. 

But one key difference here is that we aren’t using bootstrapping to estimate, we’re using it to 

conduct a test. Thus, there is a null hypothesis we need to consider – that the population 

proportions for each population are the same (p1 = p2). If the population proportions are the same, 

then we could consider our samples from each population as coming from an identical population. 

So to see what might happen by random chance, we can take two samples from this population 

using bootstrapping, and see how different they are!  

Let’s try this with our previous observational study example – the blood donations. Remember that 

the table of the results for this study is as follows: 

 

  

 

 

Thus, if we were to take this data 

and simulate this bootstrapping 

idea in TinkerPlots, the model 

might look like the sampler shown 

on the right. 

Structurally, this looks nearly 

identical to the Dolphin Therapy 

study! We took our totals for each 

of the two variables and are re-

mapping them to each other in 

some way. But this device makes 

one major change: the response or 

outcome variable is now set to 

with replacement, as it shows a 

closed top! This makes it so that we are taking one big bootstrapped sample from two identical 

populations (according to our null!), with 1298 being for the year 2012, and 1267 for year 2014.  

 Donated No Donation Total 

2012 144 1154 1298 

2014 161 1106 1267 

Total 305 2260 2565 
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Thus, if we wanted to replicate this simulation process in R, it will look very close to the dolphin 

study, but with one slight change: 

year_rand = sample(blooddonations$year, 2565, replace=F) 
donate_rand = sample(blooddonations$donation, 2565, replace=T) 
blood_rand = data.frame(treatment_rand, result_rand) 
table_rand = table(blood_rand) 
p_2012 = table_rand[1]/(table_rand[1]+table_rand[3]) 
p_2014 = table_rand[2]/(table_rand[2]+table_rand[4]) 
p_2014 – p_2012  

Here, we’re still doing a random process on each vector and calculating the difference in sample 

proportions, but now, the donation variable is sampling with replacement, reflecting the change 

from random assignment to random sampling with bootstrapping.  

To simulate this process many times now, we use the same for-loop structure that we have been 

using. We want to see how likely it is to get a difference of proportions bigger than the difference 

we observed in the table above between 2012 and 2014, which comes out to a proportion of 

0.0161. 

diffs2 = rep(0, 1000) 

for (i in 1:1000) { 
  year_rand = sample(blooddonations$year, 2565, replace=F) 
  donate_rand = sample(blooddonations$donation, 2565, replace=T) 
  blood_rand = data.frame(treatment_rand, result_rand) 
  table_rand = table(blood_rand) 
  p_2012 = table_rand[1]/(table_rand[1]+table_rand[3]) 
  p_2014 = table_rand[2]/(table_rand[2]+table_rand[4]) 
  diffs2[i] = p_2014 – p_2012 
} 

hist(diffs2) 
abline(v=0.0161, col ="red") 

mean(diffs2 >= 0.0161) 

What is the p-value that you get here? How does it compare to what we found with prop.test 

earlier?  
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8.4 – Additional Practice 
Example: Let’s revisit the dolphin therapy study we investigated last class: Researchers 

wanted to investigate a new form of animal therapy on depression. To do this, they 

recruited 30 participants aged 18-65 with a clinical diagnosis of mild to moderate 

depression. These 30 participants went to an island off the coast of Honduras, where they 

were randomly assigned to one of two groups (15 participants in each group). Both groups 

engaged in the same amount of swimming and snorkeling each day, but one group (the 

dolphin therapy group) did so in the presence of bottlenose dolphins, while the other group 

(the regular therapy group) did not. When the experiment was completed each participant’s 

level of depression was evaluated in order to determine whether or not a participant 

showed substantial improvement after the participant’s therapy (dolphin therapy or 

regular therapy).  

• Evaluate the design of this study in terms of its internal and external validity. What does 

this imply about the types of conclusions that can be drawn from this study? 

 

 

 

 

 

 

 

 

• Determine if the dolphin therapy was effective in treating subjects with depression at the α 

= 0.05 level using R to directly conduct the test (no simulation). The data from this study 

can be found in the dolphin.csv file. 
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